Publications

* denotes equal contribution

Preprints

2024

  1. arXiv
    Median Optimal Treatment Regimes
    Liu Leqi, and Edward H Kennedy
    arXiv preprint arXiv:2103.01802, 2024
  2. arXiv
    Personalized Language Modeling from Personalized Human Feedback
    Xinyu Li*, Zachary Lipton, and Liu Leqi*
    arXiv preprint arXiv:2402.05133, 2024
  3. arXiv
    A Unified Causal Framework for Auditing Recommender Systems
    Vibhhu Sharma*, Shantanu Gupta, Nil-Jana Akpinar, Zachary Lipton, and Liu Leqi*
    Coming soon, 2024
  4. arXiv
    Using Deep Reinforcement Learning to Promote Sustainable Human Behaviour on a Common Pool Resource Problem
    Raphael Koster*, Miruna Pislar*, Andrea Tacchetti, Jan Balaguer, Liu Leqi, Romuald Elie, Oliver P Hauser, Karl Tuyls, Matt Botvinick, and Christopher Summerfield
    arXiv preprint arXiv:2404.15059, 2024
  5. arXiv
    Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing Framework
    Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, and Yang Liu
    arXiv preprint arXiv:2403.08743, 2024
  6. arXiv
    Accounting for AI and Users Shaping One Another: The Role of Mathematical Models
    Sarah Dean*, Evan Dong*, Meena Jagadeesan*, and Liu Leqi*
    arXiv preprint arXiv:2404.12366, 2024

Publications

2024

  1. PNAS
    Deep Mechanism Design: Learning Social and Economic Policies for Human Benefit
    Andrea Tacchetti, Raphael Koster, Jan Balaguer, Liu Leqi, Miruna Pislar, Matthew M Botvinick, Karl Tuyls, David C Parkes, and Christopher Summerfield
    Proceedings of the National Academy of Sciences (PNAS), 2024

2023

  1. HCOMP
    A Taxonomy of Human and ML Strengths in Decision-Making to Investigate Human-ML Complementarity
    Liu Leqi*, Charvi Rastogi*, Kenneth Holstein, and Hoda Heidari
    AAAI Conference on Human Computation and Crowdsourcing (HCOMP), 2023
  2. CHI
    A Field Test of Bandit Algorithms for Recommendations: Understanding the Validity of Assumptions on Human Preferences in Multi-armed Bandits
    Liu Leqi*, Giulio Zhou*, Fatma Kilinc Karzan, Zachary Lipton, and Alan Montgomery
    ACM CHI Conference on Human Factors in Computing Systems (CHI), 2023
  3. Ph.D. Thesis
    Human-Centered Machine Learning: A Statistical and Algorithmic Perspective
    Liu Leqi
    Carnegie Mellon University, 2023

2022

  1. ICML
    Supervised Learning with General Risk Functionals
    Liu Leqi, Audrey Huang, Zachary Lipton, and Kamyar Azizzadenesheli
    In International Conference on Machine Learning (ICML), 2022
  2. ICML
    Action-Sufficient State Representation Learning for Control with Structural Constraints
    Biwei Huang, Chaochao Lu, Liu Leqi, José Miguel Hernández-Lobato, Clark Glymour, Bernhard Schölkopf, and Kun Zhang
    International Conference on Machine Learning (ICML), 2022
  3. AISTATS
    Off-Policy Risk Assessment for Markov Decision Processes
    Audrey Huang, Liu Leqi, Zachary C Lipton, and Kamyar Azizzadenesheli
    International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
  4. ICWSM
    Many Ways to be Lonely: Fine-grained Characterization of Loneliness and its Potential Changes in COVID-19
    Yueyi Jiang, Yunfan Jiang, Liu Leqi, and Piotr Winkielman
    International AAAI Conference on Web and Social Media (ICWSM), 2022
  5. AAAI
    Modeling Attrition in Recommender Systems with Departing Bandits
    Omer Ben-Porat*, Lee Cohen*, Liu Leqi*, Zachary C Lipton, and Yishay Mansour
    AAAI Conference on Artificial Intelligence (AAAI), 2022
  6. Workshop
    RiskyZoo: A Library for Risk-Sensitive Supervised Learning
    William Wong, Audrey Huang, Liu Leqi, Kamyar Azizzadenesheli, and Zachary C Lipton
    ICML workshop on Responsible Decision Making in Dynamic Environments, 2022

2021

  1. NeurIPS
    Off-Policy Risk Assessment in Contextual Bandits
    Audrey Huang, Liu Leqi, Zachary Lipton, and Kamyar Azizzadenesheli
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  2. NeurIPS
    Rebounding Bandits for Modeling Satiation Effects
    Liu Leqi, Fatma Kilinc Karzan, Zachary Lipton, and Alan Montgomery
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  3. CACM
    When Curation Becomes Creation: Algorithms, microcontent, and the vanishing distinction between platforms and creators
    Liu Leqi, Dylan Hadfield-Menell, and Zachary C Lipton
    Communications of the ACM (CACM), 2021

2020

  1. UAI
    Automated Dependence Plots
    David Inouye, Liu Leqi, Joon Sik Kim, Bryon Aragam, and Pradeep Ravikumar
    In Conference on Uncertainty in Artificial Intelligence (UAI), 2020
  2. ICML
    Uniform Convergence of Rank-Weighted Learning
    Justin Khim, Liu Leqi, Adarsh Prasad, and Pradeep Ravikumar
    In International Conference on Machine Learning (ICML), 2020
  3. Workshop
    On the Convergence and Optimality of Policy Gradient for Markov Coherent Risk
    Audrey Huang, Liu Leqi, Zachary C Lipton, and Kamyar Azizzadenesheli
    Workshop on Challenges of Real World Reinforcement Learning (RWRL) at NeurIPS, 2020

2019

  1. NeurIPS
    Game Design for Eliciting Distinguishable Behavior
    Fan Yang, Liu Leqi, Yifan Wu, Zachary Lipton, Pradeep K Ravikumar, Tom M Mitchell, and William W Cohen
    Advances in Neural Information Processing Systems (NeurIPS), 2019
  2. NeurIPS
    On Human-Aligned Risk Minimization
    Liu Leqi, Adarsh Prasad, and Pradeep K Ravikumar
    Advances in Neural Information Processing Systems (NeurIPS), 2019

2018

  1. NeurIPS
    The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models
    Chen Dan, Liu Leqi, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing
    Advances in Neural Information Processing Systems (NeurIPS), 2018

2016

  1. ICWSM
    Analyzing Personality through Social Media Profile Picture Choice
    Liu Leqi*, Daniel Preotiuc-Pietro*, Zahra Riahi Samani, Mohsen E Moghaddam, and Lyle Ungar
    International AAAI Conference on Web and Social Media (ICWSM), 2016